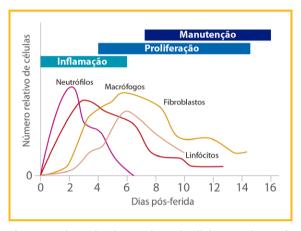
Ferida e processo cicatricial


A ferida é uma solução de continuidade dos tecidos decorrente de lesão ocasionada por agentes mecânicos, térmicos, químicos e bacterianos. O reparo de feridas ou ferimentos constitui-se no esforço dos tecidos para restaurar a função e as estruturas normais. A regeneração é a perfeita restauração da arquitetura do tecido pré-existente, na ausência de formação de cicatriz mas, embora desejável, só é observada no desenvolvimento embrionário em organismos inferiores ou em determinados tecidos como ossos e figado. Normalmente, na cicatrização de feridas, a precisão é substituída pela velocidade de reparo. A reparação de feridas segue as seguintes etapas: fase inflamatória, fase proliferativa e fase de maturação.

1 - Fase inflamatória

Tem início no exato momento em que a lesão é produzida. O sangramento traz consigo plaquetas, hemácias e fibrina selando os bordos da ferida, ainda sem valor mecânico, mas facilitando as trocas. O coágulo formado estabelece uma barreira impermeabilizante que protege a ferida da contaminação. Devido à lesão tecidual ocorre a liberação local de histamina, serotonina e bradicinina, que ocasionam vaso dilatação e aumento de fluxo sanguíneo havendo, consequentemente, sinais inflamatórios como calor e rubor. A permeabilidade capilar aumenta, causando extravasamento de líquidos para o espaço extracelular e, como consequência, ocorre o edema.

A resposta inflamatória que perdura cerca de três dias, e durante a qual ocorre a migração sequencial das células para a ferida, é facilitada por mediadores bioquímicos que aumentam a permeabilidade vascular, favorecendo a exsudação plasmática e a passagem de elementos celulares para a área ferida. Os mediadores bioquímicos de ação curta são histamina e serotonina e as mais duradouras são a bradicinina e a prostaglandina. A prostaglandina é um dos mediadores mais importantes no processo cicatricial, pois além de favorecer a exsudação vascular, estimula a mitose celular e a quimiotaxia dos leucócitos. Os primeiros elementos celulares a alcançar o local da ferida são os neutrófilos e os monócitos, cuja função é a de debridar as superfícies da ferida, fagocitar as partículas antigênicas e os corpos estranhos. O

pico de atividade dos polimorfos nucleares ocorre nas primeiras 24-48 horas após o trauma, seguindo-se de um maior aporte de macrófagos durante dois a três dias seguintes. O macrófago também ativa os elementos celulares das fases subsequentes da cicatrização, tais como os fibroblastos e as células endoteliais (Fig. 1)

Figura 1. Evolução do número relativo de células sanguíneas e fibroblastos nas fases sequenciais do processo de cicatrização.

2 - Fase proliferativa

Essa fase é composta de três eventos importantes que sucedem o período de maior atividade da fase inflamatória: a neoangiogênese, a fibroplasia e a epitelização. Esse período é caracterizado pela formação de tecido de granulação que é constituído por um leito capilar, fibroblastos, macrófagos, um frouxo arranjo de colágeno, fibronectina e ácido hialurônico. Essa fase inicia-se por volta do terceiro dia após a lesão, perdura por duas a três semanas e é o marco inicial da formação de cicatriz.

Neoangiogênese: é o processo de formação de novos vasos sanguíneos necessários para manter o ambiente de cicatrização da ferida. Em todas as feridas, o suprimento sanguíneo dos fibroblastos responsáveis pela síntese de colágeno provém de um intenso crescimento de novos vasos caracterizando a cicatrização por segunda intenção e o tecido de granulação. Os novos vasos formamse a partir de brotos endoteliais sólidos que migram no sentido da periferia para o centro da lesão sobre a malha de fibrina depositada no leito

da lesão. A bradicinina, a prostaglandina e outros mediadores químicos oriundos dos macrófagos ativados estimulam a migração e a mitose das células endoteliais. A neoangiogênese é responsável não apenas pela nutrição do tecido, com uma demanda metabólica maior, como também pelo aumento do aporte de células como macrófagos e fibroblastos para o local da ferida.

Fibroplasia: após o trauma, as células mesenquimais normalmente esparsas no tecido normal são transformados em fibroblastos e atraídos para o local inflamatório, onde se dividem e produzem os componentes da matriz extracelular. O fibroblasto só aprece no sítio da lesão a partir do terceiro dia, quando os leucócitos polimorfonucleares já fizeram seu papel higienizador da área traumatizada. A função primordial dos fibroblastos é sintetizar colágeno, ainda na fase celular da inflamação. O colágeno é uma proteína de alto peso molecular composta por glicina, prolina, hidroxiprolina, lisina e hidroxilisina que se organiza em cadeias longas de três feixes polipeptídicos em forma de hélice responsáveis pela força da cicatriz. O colágeno é o material responsável pela sustentação e pela força tênsil da cicatriz, sendo produzido e degradado continuamente pelos fibroblastos. Inicialmente, a síntese de colágeno novo é a principal responsável pela força da cicatriz, sendo substituída, ao longo de semanas, pela formação de ligações cruzadas entre os feixes de colágeno. A taxa de síntese declina por volta de quatro semanas e se equilibra com a taxa de degradação, iniciando-se então a fase de maturação do colágeno, que continua por meses ou anos.

A síntese de colágeno é dependente da oxigenação das células, da hidroxilação da prolina e lisina, reação essa mediada por uma enzima produzida pelo próprio fibroblasto, em presença de coenzimas (vitamina A, C e E), ferro, testosterona, tiroxina, proteínas e zinco.

Epitelização: nas primeiras 24 a 36 horas após a lesão, fatores de crescimento epidérmicos estimulam a proliferação de células do epitélio. Na pele, os ceratinócitos são capazes de sintetizar diversas citocinas que estimulam a cicatrização de feridas cutâneas. As células epiteliais migram a partir das bordas sobre a área cruenta da ferida e dos folículos pilosos próximos induzindo a contração e a neoepitelização da ferida, reduzindo sua superfície. Os ceratinócitos localizados na

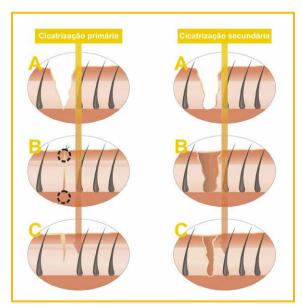
camada basal da epiderme residual ou na profundidade de apêndices dérmicos revestidos de epitélio, migram para recobrir a ferida. As células epiteliais movem-se aos saltos e de forma desordenada até as bordas, aproximando-as. A epitelização envolve uma sequência de alterações nos ceratinócitos da ferida – separação, migração, proliferação, diferenciação e estratificação.

Matriz extracelular: a matriz extracelular, também conhecida como substância fundamental, substitui rapidamente o coágulo depositado no leito da ferida logo após o trauma. A principal função da matriz é a restauração da continuidade do tecido lesado funcionando como um arcabouço para a migração celular. Os fibroblastos são as maiores fontes de proteínas da matriz, em que irão ordenar os feixes de colágeno produzidos também pelos próprios fibroblastos, além de serem a base para os vasos neoformados. Ela é constituída por várias proteínas como fibrina e colágeno, proteoglicanos (ácido hialurônico e condroitina), glicoproteínas (fibronectina e laminina), água e eletrólitos.

3 - Fase de maturação

Contração da ferida: a ferida sofre um processo de contração, por meio de um movimento centrípeto de toda a espessura da pele circundante, reduzindo a quantidade e o tamanho da cicatriz desordenada. Esse processo é um importante aliado da cicatrização das feridas, principalmente as abertas. Porém, se ocorre de forma exagerada e desordenada causa efeitos cicatriciais importantes devido à diferenciação dos fibroblastos em miofibroblastos estimulados por fatores de crescimento.

Remodelação: a maturação da ferida tem inicio durante a terceira semana e caracteriza-se por um aumento da resistência, sem haver aumento de colágeno. Há um equilíbrio de produção e destruição das fibras de colágeno nesse período, por ação da colagenase.


O desequilíbrio dessa relação favorece o aparecimento de cicatrizes hipertróficas e queloides. O aumento da resistência deve-se à remodelagem das fibras de colágeno, com o aumento das ligações transversas e melhor alinhamento do colágeno, ao longo das linhas de tensão. A fase de maturação dura toda a vida da ferida, embora o aumento da força tênsil se estabilize após um ano,

Informativo Organnact

em 70 a 80% da pele intacta. A inclinação da curva de maturação é mais aguda durante as primeiras seis à oito semanas.

Tipos de cicatrização: há três formas pelas quais uma ferida pode cicatrizar e que dependem da quantidade de tecido lesado ou danificado e da presença ou não de infecção:

- Primeira intenção: é o tipo de cicatrização que ocorre quando as bordas são apostas ou aproximadas, havendo perda mínima de tecido, ausência de infecção e mínimo edema. A formação de tecido de granulação não é visível (Fig. 2).
- Segunda intenção: ocorre perda excessiva de tecido com a presença ou não de infecção. A aproximação primária das bordas não é possível. A ferida é deixada aberta e se fechará por meio de contração e epitelização.
- Terceira intenção: designa a aproximação das margens da ferida (pele e subcutâneo) após o tratamento aberto inicial. Isso ocorre principalmente quando há presença de infecção na ferida, que deve ser tratada primeiramente para então ser suturada posteriormente.

Figura 2. Representação esquemática da cicatrização por primeira e por segunda intenção.

Fatores que interferem na cicatrização Fatores locais:

 Vascularização das bordas da ferida: a boa irrigação das bordas da ferida é essencial para

- a cicatrização, pois permite aporte adequado de nutrientes e oxigênio.
- Grau de contaminação: limpeza mecânica, remoção de corpos estranhos, detritos e tecidos desvitalizados.
- Tratamento das feridas: assepsia e antissepsia, técnica cirúrgica correta, escolha de fio cirúrgico mais indicado, cuidados pós-operatórios adequados são alguns dos aspectos importantes de serem observados.

Fatores gerais:

- Infecção: causa mais comum de atraso na cicatrização. Se a contagem bacteriana na ferida exceder 10 g micro-organismos/g de tecido ou se qualquer *Streptococcus* β-hemolítico estiver presente, a ferida não cicatriza por qualquer meio: como suturas primárias, enxertos ou retalhos.
- Idade: com o avançar da idade, menos flexíveis são os tecidos, havendo uma diminuição progressiva do colágeno.
- Hiperatividade: ela dificulta a aproximação das bordas da ferida. O repouso favorece a cicatrização.
- Oxigenação e perfusão tecidual: doenças que alteram o fluxo sanguíneo normal podem afetar a distribuição dos nutrientes das células, bem como o aporte dos componentes do sistema imune do organismo dificultando a cicatrização.
- Nutrição: deficiência nutricional deprime o sistema imune diminuindo a qualidade e a síntese de tecido de reparação. As carências de proteínas e vitamina C são as mais importantes, pois afetam diretamente a síntese de colágeno. A vitamina A contrabalança os efeitos dos corticoides que inibem a contração da ferida e a proliferação de fibroblastos. A vitamina B aumenta o número de fibroblastos, a vitamina D facilita a absorção de cálcio e a E é um cofator na síntese do colágeno, melhora a resistência da cicatriz e destrói radicais livres. O zinco é indispensável na reparação dos tecidos, pois está envolvido no crescimento celular e na síntese proteica.
- Diabetes: a propensão à isquemia tecidual nos diabéticos prejudica a cicatrização de ferida em todos os estágios do processo.
- Medicamentos: os corticosteroides, os quimioterápicos e os radioterápicos podem reduzir a cicatrização de feridas, pois interferem

na síntese proteica ou divisão celular agindo diretamente na produção de colágeno. Também aumentam a atividade da colagenase tornando a cicatriz mais frágil.

 Estado imunológico: nas doenças imunossupressoras, a fase inflamatória está comprometida pela redução de leucócitos, com consequente retardo da fagocitose e da lise de restos celulares. Pela ausência de monócitos, a formação de fibroblastos é deficitária.

Plantas com ação sobre o processo de cicatrização

A Echinacea (Echinacea angustifolia) tem ação inibitória sobre a hialuronidase – enzima que organiza o grau de polimerização e viscosidade dos espaços extracelulares favorecendo a expansão dos processos infecciosos. O Barbatimão (Stryphnodendron barbatimam), cuja casca é rica em taninos, tem ação dessecante e antisséptica. A fração mucilaginosa das folhas de Aloe vera (Aloe vera) apresenta atividade fortemente cicatrizante devido ao polissacarídeo aloeferon, além de ação bactericida e fungicida.

A Calêndula (*Calendula officinalis*) tem ação anti-inflamatória, antisséptica, emoliente e cicatrizante. Os mucilagos, flavonoides, triterpenos e carotenos presentes no extrato de Calêndula ativam o metabolismo das glucoproteínas, nucleoproteínas e tecido colágeno, além de induzir a microvascularização contribuindo com o processo cicatricial. Promove rápida regeneração e reepitelização de tecidos.

A Camomila (*Matricaria chamomilla*) por meio dos ativos azuleno e camazuleno, tem ação calmante. Estudos apontam que a Própolis apresenta toxicidade contra células cancerígenas e atividades antioxidante, anti-inflamatória, hepatoprotetora, imunoestimulante e antibiótica. Sua composição química é variada sendo que já foram identificadas mais de 200 substâncias incluindo ácidos fenólicos, flavonoides, ésteres, diterpenos, sesquiterpenos, lignanas, aldeídos aromáticos, álcoois, aminoácidos, ácidos graxos, vitaminas e minerais. Entre essas classes, destacam-se a dos flavonoides e a dos ácidos fenólicos, pois é atribuída à elas grande parte das atividades biológicas contatadas para a própolis.

O Confrei (Symphytum officinalis) apresenta, entre seus principais componentes, os ácidos

fólicos, ascórbico, nicotínico, tânico, o alcaloide alantoína, saponinas, taninos, vitaminas A, B e E, zinco e contém ainda algumas saponinas triterpênicas de ação antimicrobiana. A ação local do Confrei é devida à presença da alantoína – substância de comprovada ação cicatrizante, do ácido rosmarínico – responsável principal pela ação anti-inflamatória e da mucilagem que tem ação anti-irritante e hidratante.

Relato clínico

Fêmea da raça Pastor Alemão envolveu-se em uma briga com outro cão. Ela foi tratada com Fitofix Gel utilizado duas vezes ao dia sobre os ferimentos. A seguir, a evolução do caso.

Figura 1. Primeiro dia.

Figura 2. Segundo dia.

Informativo Organnact

Figura 3. 33º dia de tratamento.

Figura 4. 33º dia.

Referências

- 1. ALONSO, J. R. *Tratado de Fitomedicina* Bases Clínicas e Farmacológicas. Buenos Aires, Ed. ISIS, 1998.
- 2. CHEVALIER, A.: *The Encyclopedia of Medicinal Plants*. A Dorling Kindesley. London.1996.
- 3. LORENZI, H.; ABREU MATOS, F.J. *Plantas Medicinais no Brasil:* nativas e exóticas cultivadas. Nova Odessa, SP: Instituto Plantarum, 2002.
- 4. NEWALL, A.; CAROL, et al. *Plantas Medicinais* Guia para Profissionais de Saúde. São Paulo: Ed. Premier, 2002.
- 5. TAZIMA, M. F. G. S.; VICENTE, Y. DE A.; MORIYA, T. *Biologia da ferida e cicatrização*. Medicina (Ribeirão Preto) 2008; 41 (30: 259-264)
- 6. VIANA LEITE, J. P. *Fitoterapia* Bases Científicas e Tecnológicas. São Paulo, Ed. Atheneu, 2009. p. 47-115.